Name:____

Montgomery Academy

Science Department

Year 9 Knowledge Organiser 2023-2024

<u>Contents</u>

- Practical Skills Pages 3 to 4
- Ecology Pages 5 to 7
- Waves Pages 8 to 10
- 9-1 Cells Pages 11 to 12
- 9-1 Atomic Structure Pages 13 to 15
- 9-1 Energy Pages 16 to 17
- 9-1 Structure and Bonding Pages 18 to 20
- 9-1 Organisation Pages 21 to 25

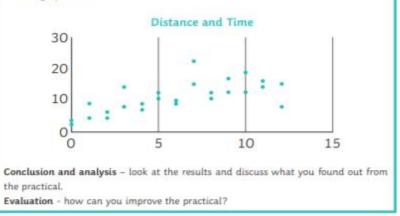
A science laboratory is used for carrying out practical	Scientific Equipment	The Safety Flame	The Roaring Flame
nvestigations. They involve using dangerous chemicals and practical equipment such as Bunsen burners. Some practical equipment, such as test tubes, are easily breakable so care must be taken. The pupils' and teacher's health and safety are very important so that no one gets hurt. Hazard symbols show people how dangerous a chemical is, and what care should be taken when handling them.	Diagrams are used when drawing practical equipment to make it easier and quicker to draw.	The safety flame is used when the Bunsen burner is not in use. The flame is easier to see when it is the yellow flame. To produce this flame, the air hole is fully shut. Less oxygen will get into the Bunsen burner, hence the yellow flame.	The roaring flame is use to heat things quickly. T produce this flame, the ai hole must be fully oper More oxygen will get int the Bunsen burner, hence the blue flame.
Symbols can be used all over the world and are mmediately recognisable, so it doesn't matter which anguage is used. flammable -	filter paper and funnel test tube beaker bunsen burner conical flask		
harmful -	Stand up during a practical. many science ex	er ner is an important piece of scien periments and uses methane gas.	tific equipment. It is used i
irritant -	 No running in the lab. Tie long hair back with a bobble. When something gets broken, tell a teacher. Inform a teacher of any spills and mop up immediately. 		• roaring flame air hole
	Make sure equipment gets put away at the end of a practical.		

low	to Use a Microscope	Using a Microscope	Investigation Skills
1. 2. 3. 4,	Plug in the microscope and turn on the light. Place the specimen (the object to be observed) on the stage. Turn the magnification to the smallest. Make sure that the specimen is	Microscopes have been used for years to observe objects that are too small to see with the naked eye. Over time, the magnification of microscopes has significantly improved due to developments in technology. We now have microscopes that can examine specimens at an atomic level. We have made many important scientific discoveries thanks to microscopes.	Independent variable – the variable you change. Dependent variable – the variable you measure. Control variables – the variables you keep the same. Prediction – what you think will happen and why? Method – how to carry out the practical investigation. Results table - as the practical is carried out, write the results in a table
5.	in the centre; fasten it with the clips. Look down the microscope.	objective lens stage clips	Bar graph – used with categorical data. Transport Method
6.	Use the fine focussing wheel to observe the specimen.	stage coarse adjustment knob	15
7.	Increase the magnification.	fine adjustment knob	
8.	Draw/write down any observations.	base light source	5

The Flame Test

This test is used to find out what metal ion is in a compound. Each metal will burn with a different colour when placed into a Bunsen burner.

- 1. Dip the splint in some water.
- 2. Dip the wet end in a test tube sample of metal chloride e.g. copper chloride.
- 3. Turn the Bunsen burner to the blue flame and carefully place the end of the splint with the metal into the flame.
- 4. Write down any observations/colours in the results table.


Chemical	Flame Test Colour	14
potassium (K)	purple	A
calcium (Ca)	yellow-red	A de
lithium (Li)	red	
sodium (Na)	orange	8
copper (Cu)	green-blue	

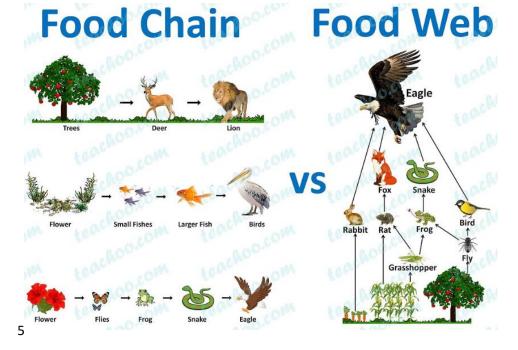
Car

To school

0

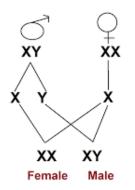
Bicycle

To home


Bus

Ecology, Inheritance and Variation (Part 1)

20. Classification of organisms		
Carl Linnaeus	Invented the groups we classify organisms into 1. Kingdom 2. Phylum 3. Class 4. Order 5. Family 6. Genus 7. Species	


3. Levels of organisation		
Producer	Producer An organism that makes its own food by photosynthesis. They are the starting point of all food chains	
Consumer	Organism that eats something	
Predator	Consumer that hunts	
Prey	Consumer that is hunted	

11. Trophic levels (TRIPLE ONLY)		
1	producers	Plants and algae
2	Primary consumers	Herbivores
3	Secondary consumers	Carnivores/ Predators
4	Tertiary consumers	Top carnivore/ apex predator
Energy loss between trophic levels		Only 10% of biomass makes it up each trophic level. It is wasted by • Respiration of glucose • Wasted being produced and excreted

Ecology, Inheritance and Variation (Part 2)

8. Sex determination		
No of chromosomes in a human	23 pairs (22 normal, 1 pair of sex)	
Male	XY (50% chance)	
Female	XX (50% chance)	
Sperm	Can hold Y or X chromosome so determine gender of embryo	

9. Variation	
Variation	Changes within a population. Caused by mutation
Genetic variation	Changes due to inheriting different alleles of genes
Environmental variation	Changes due to the effect the environment has

10. Evolution		
Evolution	The change in the inherited characteristics of a population due to natural selection. May result in a new species	
Natural selection	The process where the organism best adapted to the environment survives and passes on their characteristics	
Species	A group of organisms with similar features which can breed to make fertile offspring	
Stages of evolution		
1. Population shows variation due to their genes		
2. Environment changes		
3. Some individuals are best adapted and live longer		
4. These can breed and produce more offspring		
5. Over a long period of time the offspring dominate the population		

11. Selective breeding		
Selective breeding	The ancient practice of artificially selecting animals and plants to breed together to create certain characteristics	

Ecology, Inheritance and Variation (Part 3)

1. Keywords	
Ecosystem	The interaction of a community of living organisms with their environment
Biotic	Living factors
Abiotic	Non-living factors
Interdependence	Different species rely on each other for survival within an ecosystem
Adaptations	Features that help an organism survive in a particular habitat
Habitat	Natural environment of a particular organism
Competition	The process by which organisms try to gain raw materials over each other. Plants compete for space, light water and mineral ions Animals compete for shelter, food, water and mates
Biodiversity	The variety of all the living organisms within the earth or ecosystem. A good thing

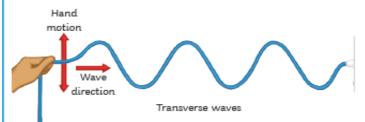
Useful Websites

Food chains and webs - <u>https://www.bbc.co.uk/bitesize/guides/zq4wjxs/revision/1</u>

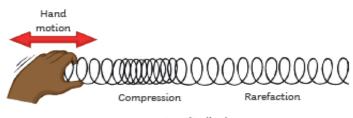
Biodiversity - https://www.bbc.co.uk/bitesize/guides/zw9jq6f/revision/1

9. Impact of pollution	
Destruction of peat bogs	Reduction in biodiversity Burning the peat releases carbon dioxide
Deforestation to make room for agriculture and biofuels	Reduction in biodiversity Reduces ability to absorb carbon dioxide
Global warming	Extreme weather Famine

10. Maintaining biodiversity

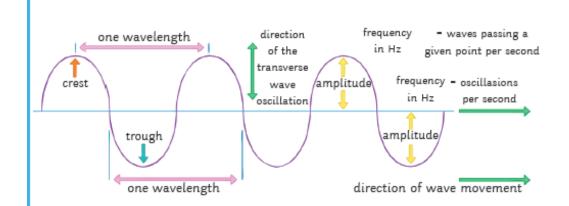

- 1. breeding programmes for endangered species
- 2. protection and regeneration of rare habitats
- 3. reintroduction of field margins and hedgerows in agricultural areas
- 4. reduction of deforestation and carbon dioxide emissions by some governments
- 5. recycling resources rather than dumping waste in landfill.

<u>Waves</u>


Transverse and Longitudinal Waves

Waves can be either transverse or longitudinal.

In a transverse wave, the vibrations are at a right angle (perpendicular) to the direction of the energy transfer. The wave has peaks (or crests) and troughs. Examples include water waves and light waves.

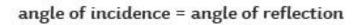

In a longitudinal wave, the vibrations are in the same direction (parallel) as the energy transfer. The wave has areas of compression and rarefaction. Examples of this type of wave are sound waves.

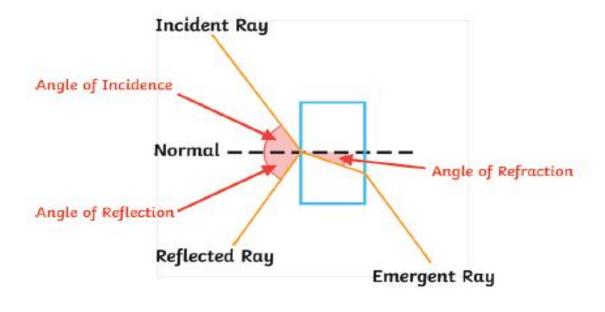
Longitudinal waves

When a wave travels, energy is transferred but the matter itself does not move. Particles of water or air vibrate and transfer energy but do not move with the wave.

Properties of Waves

The **frequency** of a wave is the number of waves which pass a given point every second.

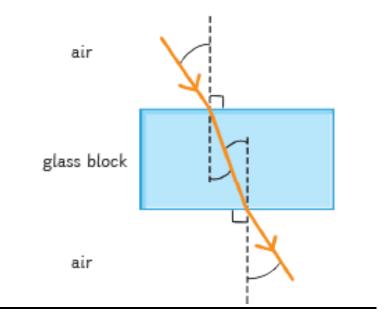

```
time period (s) = 1 ÷ frequency (Hz)
```


t = 1 ÷ f

The **wave speed** is how quickly the energy is transferred through a medium (how quickly the wave travels).

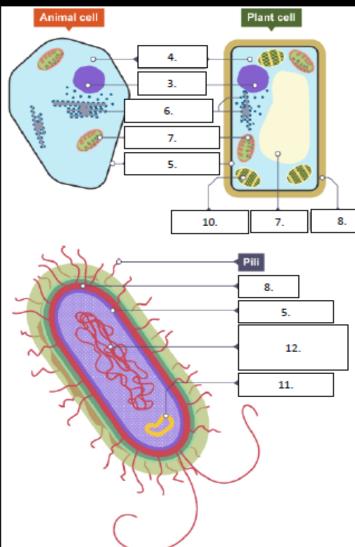
wave speed (m/s) = frequency (Hz) × wavelength (m)

The law of reflection states:



Refraction

As the wave moves to a more dense medium (e.g. from gas to solid), it slows down and bends so that the angle from the normal becomes smaller. The angle of incidence is larger than the angle of refraction.


As the wave moves from a more dense medium (e.g. from solid to gas), it speeds up and bends so that the angle from the normal becomes larger. The angle of refraction is larger than the angle of incidence.

The angle at which a wave enters the glass block is equal to the angle that it leaves the glass block (when entering and leaving the same medium); however, if a wave crosses a boundary between two mediums at an angle of 90°C, then it will not change direction but instead carry on in a straight line.

Biology Topic 1: Cell Biology

1. Cell structure

Keywords	
1. Eukaryotic	A complex cell with a nucleus (e.g. animal or plant cells).
2. Prokaryotic	A smaller cell without a nucleus (e.g. bacterial cell).
3. Nucleus	Contains genetic material.
4. Cytoplasm	Where a cells chemical reactions happen.
5. Cell membrane	Controls what goes into and out of a cell.
6. Ribosome	Part of a cell where proteins are made.
7. Mitochondria	Where aerobic respiration takes place.
8. Cell wall	Only found in plant cells. Made of cellulose and supports the cell.
9. Vacuole	Only found in plant cells. Contains cell sap.
10. Chloroplasts	Only found in plant cells. Where photosynthesis takes place.
11. Plasmid	Only found in bacterial cells. A small loop of DNA.
12. Genetic material	Long strands of genes not tightly pack in a nucleus.
	1. Eukaryotic 2. Prokaryotic 3. Nucleus 4. Cytoplasm 5. Cell membrane 6. Ribosome 7. Mitochondria 8. Cell wall 9. Vacuole 10. Chloroplasts 11. Plasmid 12. Genetic

2. Specialised cells

Keywords	
Differentiation	A stem cell turning into a specialised cell
Stem cell	A special type of cell which can turn into other specialised cells
Adult stem cells	Can only produce certain types of cell -found in bone marrow
Embryonic stem cells	Can produce all types of cells - controversial
Meristems	Where plant stem cells are found
Sperm cells	Take male DNA to the egg Tail to help it swim Lots of mitochondria for energy
Nerve cells	Carry electrical signals around the body • Long to cover long distances • Branches to connect to other cells
Muscle Cells	Muscle cells contract • Long so have space to contract • Lots of mitochondria for energy
Root hair cells	Root hair cells absorb water and minerals • Long hairs • Big surface area for absorption
Phioem Cells	Phicem cells transport sugars (plants) • Long tube joined end to end
Xylem cells	Xylem cells transport water (plants) Long tubes joined end to end Hollow so water can flow through

Type of microscope	Advantages		Disadvantages								
Light microscope	 Cheaper Can see colours Can see live spe 		wer agnificati	on							
Electron microscope	Expensive Higher magnifice (x1000 more)	ation	 Can only see dead specimen No colour 								
4. Calculating magnifi	(x1000 more)	ation	2. No	colour	(1000						
			(mm)	(μm)	(nm)						
magnification = -	size of image	2mm	2	2000 (2 * 1	(2 x 10)						
a	ctual size of object	130um	0.13	130	13000						

130µm

0.032m

7.25µm

0.13

32

0.00725

130

7.25

+ 1000

32000 (3.2 x 10⁺)

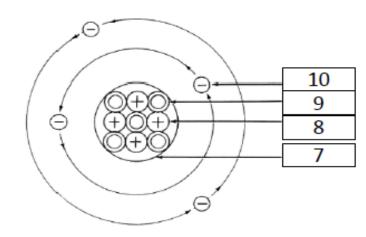
size of image magnification

actual size of object =

5. Culturing micro-organisms TRIPLE ONLY							
Keywords		ĺ					
Binary fission	"Splitting in two" how bacteria divide every 20 mins	Í.					
Agar gel	A gel of nutrients bacteria can grow on	ĺ					
Nutrient broth	A liquid bacteria grow well in	Í.					
Colony	A group of bacteria making a small circular shape	İ					
Inoculating loop	A metal loop use to transfer microorganisms	ĺŀ					
Petri dish	A small plastic dish used for growing microorganisms	İ					
Aseptic	Free from bacteria and viruses						
Incubator	Device kept at constant temperature to help the microorganisms grow	Í					

Aseptic technique									
prep	All agar plates and broth must be sterilised before use								
1.	The inoculating loop must be sterilised by passing through a flame								
2.	Sample to be cultured is taken using the loop								
3.	Sample spread on agar in petri dish								
4.	Dish sealed shut with tape and incubated at 25° C								

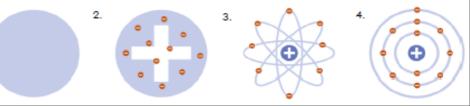
130000 (1.3 x 10°)


32000000 (3.2 × 10²)

7250 (7.25 x 10²)

+ 1000

Chemistry topic 1: Atomic structure


1. Keywords	
1. Afom	The smallest possible piece of an element. Has a radius of 0.1nm (or 1x10-10m)
2. Element	A substance in which all the atoms have the same atomic number
3. Isotope	Atoms with the same number of protons but different numbers of neutrons
4. Molecule	Two or more atoms bonded together
5. Compound	Two or more <u>different</u> atoms bonded together
6. Mixture	At least two different elements or compounds together. Can be separated easily
7. Nucleus	The centre of an atom. Contains protons and neutrons
8. Proton	A positively charged particle found in the nucleus
9. Neutron	A neutral particle found in the nucleus. Has no charge
10. Electron	A negatively charged particle found in energy levels (shells) around the nucleus

2. Properti	es of sub-ato	mic particl	es
Particle	Relative mass	Relative charge	Location
Proton	1	+1	Nucleus
Neutron	1	0	Nucleus
Electron	0	-1	Shells
	Key		- 14
atom	atomic mass ic symbol name roton) numb	H	ion.

3. Using the periodic table											
Number of	Is the	Found by									
Protons	Atomic (proton) number	Smaller number on periodic table									
Electrons	Atomic (proton) number	Smaller number on periodic table									
Neutrons	Difference between the atomic mass and atomic number	Big number – small number									

4. History of the atom									
Discovery	Ву	Model	Diagram						
Solid particle called atom	John Dalton	Particle: solid spheres	1						
The electron	JJ Thompson	Plum pudding: positive 'cake' with negative 'plums'	2						
Nucleus	Rutherford	Nuclear: Positive nucleus surrounded by electrons	3						
Neutron	James Chadwick	Nuclear: Now with protons and neutrons in nucleus	3						
Energy levels (shells)	Niels Bohr	Planetary: Electrons now 'orbit' in different shells	4						

1.

5. Electron arra	ingement rules					8	lav	outo	fthe	a ner	iodia	- tai	ole																												
1. Alw	ays fill from the insi	de to the outside					cay	0010		- pci			one.																												
2. The	first shell can only	old 2 electrons	1	Period	No. of shells		G	oup	5																																
3. The	second and third	an hold 8	1				1	2											3	4	5	6	7	0																	
I				1	1		Ţ	Ţ						н										He																	
6. History of the	Periodic Table							Be											R	C	N	0	F	Ne																	
Invented by	Dmitri Mend	eleev, a Russian scientist.		2	2		Na													Si	P	s	CI	Ar																	
Arranged		omic mass, and by their	1				V	mg Ca	80	Ti	v	Cr	Mn	Fe	Co	Ni	Cu	70	AI Co	Ge	P Ac	0	Br	Kr																	
	chemical pr	-		3	3	ods	-		30			•			00						AS	30	DI																		
What was spec about it?		e existence of other elements ed, and left gaps for them in his				Periods			Y			Мо	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb		1	Xe																	
	table			4	4		Cs	Ba	La	Hf	Та	W	Re	Os	lr.	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn																	
Why was it used		New elements were discovered that matched these gaps		5	5		Fr	Ra	Ac																																
				<u> </u>			Г	•	lkal	i me	tals			Γ	h H	lalo	gens	;																							
7. Properties – n	netals and non-me	tals		6	6												9																								
Property	Metals	Non-metals										ŀ	ran	sitio	n me	stals	5		N	lobl	e ga	ses																			
Density	High (they feel heavy for their	Low (they feel light for		7	7		-																																		
Density	size)	their size)		TL/DR:	TL/DR:		rou	0			1	1	2	2	3		4		5		6	7	7	8																	
Strength	Strong	Weak		Group number Tells you're the number of outer electrons Period number Tells you how		Tells you're the number of outer electrons Period number		Tells you're the number of outer electrons Period number		Tells you're the		Tells you're the		Group number		EL	acte	ons i		lor.										-			-								
Malleable or	Malleable (they bend without	Brittle (they break or												_	ell	onsi	100			1	2	2	3		4		5		6	7	′	8									
brittle	breaking)	shatter when hammered)								(Cł		Charge of ion		-	+1	+	2	+3	3	N/A		-3		-2	-1	1	N/A														
Conduction of heat	Good	Poor (they are insulators)																																N	/A	N	A	N/		4	+
Conduction of electricity	Good	Poor (they are insulators) apart from graphite		many sh				ent k									г		<u> </u>		-																				
		-Lauris State in] [/A =	not	appi	icab	le (d	loes	not	do i	t)																										

9. Properties	– Groups 1 ar	id 7									
Group 1 (I)	Melting point	Density	Reactivity	Group 7 (VII)	Melting point	Density	Reactivity	Group 0 (VIII)	Melting point	Density	Reactivity
Lithium (Li)	Decreases down the	Increases down the	Increases down the	Fluorine (F)	Increases down the	Increases down the	Decreases down the	Helium (He)	Increases down the	Increases down the	INERT
Sodium (Na)	group	group	group	Chlorine (Cl)	group	group	group	Neon (Ne)	group	group	(DO NOT REACT)
Potassium (K)				Bromine (Br)]			Argon (Ar)			
Rubidium (Rb)	-			lodine (I)				Xenon (Xe)			

10. Transition metals (TRIPLE ONLY)									
Properties compared to group 1 elements	Other useful properties								
More dense	lons can have different charges								
Harder	Form coloured compounds								
Stronger	Good catalysts								
Higher melting points									
Less reactive									

11. Common separation techniques

1. Chromatography

Used to separate a mixture of dyes in ink.

2. Filtration

Used to separate insoluble solids from liquids (e.g. sand from water).

3. Evaporation

Used to separate a soluble salt from solution. The solution is heated strongly in an evaporating basin until dry crystals are left.

4. Crystallisation

Used to separate a soluble salt from solution. The solution is heated gently in an evaporating basin until crystals form; the remaining liquid is filtered out.

5. Simple distillation

Is used to separate a liquid from a solution – e.g. water from ink. A condenser is used to cool hot gas until it forms a liquid.

6. Fractional distillation

Used to separate a mixture of liquids with different boiling points.

DL.	ysics	L	- 4.		
Phy	USICS	TODI	C 1: I	cner	au
					9J

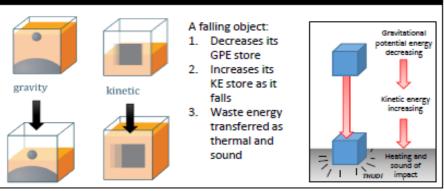
Physics topic it	Energy			
1. Key Term	Definition			
Kinetic energy (KE)	The energy an object has because it is	moving		
Gravitational potential energy (GPE)	The energy an object has because of it	s position		
Elastic potential energy	The energy stored in a springy object v stretch or squash it	vhen you		
Thermal energy	The energy a substance has because o temperature	fits		
Chemical energy	The energy stored in fuels, food, and b	atteries		
Conservation of energy	Energy cannot be created or destroyed transferred.	d only		
Work done	The energy transferred by a force			
Dissipation	ed or lost to			
Friction	A force that opposes movement			
System	An object or group of objects			
Closed system	An isolated system where no energy transfers take place into or out of the energy stores in the system.			
Useful energy	Energy in the place it is wanted in the form that it is needed in			
Wasted energy	Energy that is not usefully transferred, usually as thermal.			
2. Calculating efficiency	•	5. Energy is		
	out energy transferred by the device	transferred by:		
1.Efficiency = Total input	energy supplied to the device	1. Heating 2. Waves		
2. Efficiency = Useful pow	erout	3. Electric		
Total pow	ver in	current		
	an 100% efficient. ecause of friction between their , electrical resistance, and noise. 4. Force when it moves an object.			

3. Equations to recall and apply

Work done, W = force applied, F x distanced moved, s (joules, J) (newtons, N) (metres, m)

Change in objects gravitational potential = mass, m x energy store, ΔE _p (kilograms, kg) (joules, J)	Gravitational field strength, g x (newtons per kilogram, N/kg)	Change of height, Δh (metres, m)
--	---	--

Elastic potential energy, E = ½ x spring constant, k x extension² , e ² (joules, J) (newtons per metre, N/m) (metres, m)

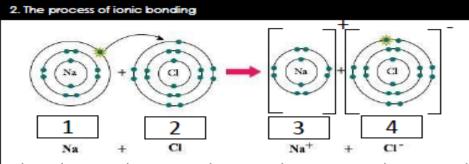

Kinetic energy, E_k = ½ x mass, m x speed², v² (joules, J)

(kilograms, kg) (metres per second, m/s)

4. Power 1. The more powerful an appliance, the faster the rate at which it transfers energy

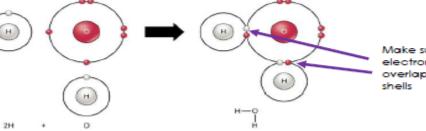
- Energy transferred to appliance, E (joules, J) 2. Power, P =
- Time taken for energy to be transferred, t (seconds, s) (watts, W)
- 3. The power wasted by an appliance = total power input useful power output

6. Conservation of energy in action

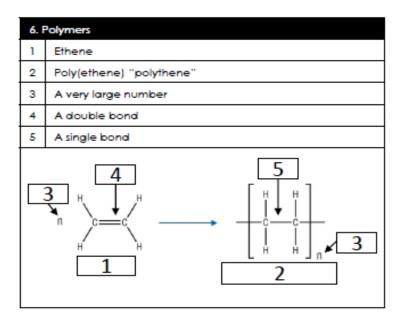


ergy Resources			
Energy Resource	Renewable	Advantages	Disadvantages
Fossil Fuels	No	 Low cost. Easily transportable. Reliable. 	 Produces large amounts of Carbo Dioxide. Produces some Sulfur Dioxide.
Nuclear	No	 Generates a lot of electricity. Reliable. 	 Expensive to construct and run. Produces dangerous radioactive waste which will last for thousands years.
Solar	Yes	No fuel costs.No pollution.	 Expensive to set up. Doesn't work at night.
Wave	Yes	No fuel costs.Reliable.	 Can damage marine ecosystems. Not everywhere is near water.
Tidal	Yes	 No fuel costs. No pollution. Reliable. 	 Can damage marine ecosystems. Not everywhere is near water.
Wind	Yes	No fuel costs.No pollution.	 Not always reliable. Noisy. Some think they are ugly (eyesore)
Geothermal	Yes	No fuel costs.No pollution.	 Very few areas where it is accessit
Biomass	Yes	 Low cost. Readily available. Carbon neutral. 	 Large scale land use requiring lots water. Destruction of habitat to grow cro
Hydro-electric	Yes	 No fuel costs. Reliable. Easily controlled. 	 Requires flooding land to build

Carbon neutral: a process by which no extra carbon is released to the atmosphere.


Chemistry Topic 2: Bonding, Structure, and the properties of matter

	•
1. Keywords	
lonic bond	When a metal donates electrons to a non-metal forming opposite charged ions that are attracted to each other
Covalent bond	A shared pair of electrons between two non-metals
Metallic bond	Positive metal ions in a 'sea' of delocalised electrons
lons	Charged atoms which have either gained or lost electrons
Electrons	Negative particles found in the shells of atoms
Group 0	The unreactive 'noble gases' all elements aim to get to group 0 electron configuration when they react
Dot and cross diagrams	The simplest way we show the bonding in atoms
Polymer	A long chain molecule made up of repeating monomers
Monomer	The small molecules that join together to make polymers
Delocalised	Electrons which are free to move anywhere
Alloy	A mixture of a metal and another element to change its properties


NO	Name	Electron movement	Charge	Electron configuration	Does it have a full outer shell?
1	Sodium atom	0	0	2,8,1	No
2	Chlorine atom	0	0	2,8,7	No
3	Sodium ion	Lost 1	+1	2,8	Yes
4	Chloride ion	Gained 1	-1	2,8,8	Yes

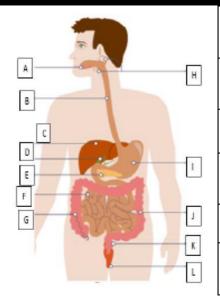
3. The process of covalent bonding								
1	Non metals share their outer unpaired electrons							
2	Now all outer shell spaces appear full							
3	There is no change in charge. They remain uncharged							

Make sure both electrons are in the overlap of the outer shells

4. Me	etallic bonding	
1	Metal atoms	
2	Positive metal ions	
3	'Sea' of delocalised elect	rons
	$ \begin{array}{c} $	$ \begin{array}{c} 2\\ \odot \odot \odot\\ \odot \odot\\ \odot \odot\\ \hline 3 \end{array} $

5. State symbols						
Symbol	Meaning	Example				
(s)	Solid	Gold				
(1)	Liquid	Water				
(g)	Gas	Hydrogen				
(ad)	Aqueous (dissolved in water)	Salt solution				

7. General properties of different substances							
Property	lonic compounds	Small covalent molecules	Giant covalent structures	Metals and alloys			
Density	High	Low	High	High			
Melting and boiling point	High	Low	High	High			
Conduct electricity	Only melted or dissolved in water	No	No (apart from graphite)	Yes			
Conduct heat	No	No	No (apart from diamond)	Yes			
Brittle or malleable	Brittle	N/A	Brittle	Malleable			
Examples	 Salt (sodium chloride) Magnesium Sulfate 	 Chlorine Oxygen 	 Diamond Graphite Sand 	IronSteel			


9. The structure an	nd bonding	of carbo	n		Í			
Name of structure	Diamono	ł	Graphite	Graphene + Fullerene				
Number of bonds	4		3	3				
Any delocalised electrons?	no		yes	Yes	AT S	R	- Web-Periodicina	500 × 1 × 1 × 1
Hardness	Very har	d	soft	Flexible and strong			7000	1000
Conduct electricity	No		yes	Yes	KB.	fullerene	nanotube	graphene
Melting point	Very high	n	High	High		ionererie	hanotobe	giopricite
Uses	GemsDrill bits		ElectrodesPencils	ElectronicsNanotubes				
10. Bulk and surfac	ce properti	es of nand	oparticles (TRIPLE C	NLY)	+	1		
Name		Size in n	anometres	Size in standard	form		Diamond	Graphite
Nanoparticles		1-100 nr	n	1x10% m to 1x107 m				
Fine particles		100-250	0 nm	1 x 10 ⁻⁷ m to 2.5 x 10 ⁻⁶ m			++++	******
Coarse particles ("dust")		2500nm	– 10000nm	2.5 x 10 ⁻⁶ m to 1 x	2.5 x 10 ⁻⁶ m to 1 x 10 ⁻⁵ m		THE P	
Uses of nanoparticles Ex		Example	ple			17		
1.Medicine1.2.Electronics2.3.Cosmetics3.4.Sunscreen4.5.Deodorants5.		 Weo Anti- 4. Suns 	vering drugs direct trable electronics aging creams creen without whit bacterial action rne			Ŷ		

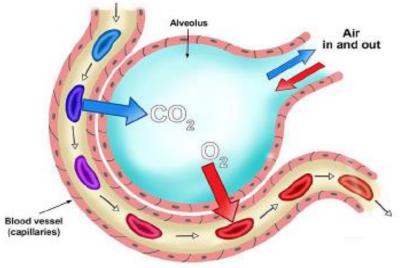
1. Principle of or	1. Principle of organisation							
Level	Definition	Examples						
Cell	Basic building blocks of all living organisms	Cheek Muscle						
Tissue	Group of cells with a similar structure and function	Glandular Epithelial						
Organ	A group of tissues performing specific functions	Stomach Pancreas						
Organ system	A group of organs which work together to form organisms	Digestive system						

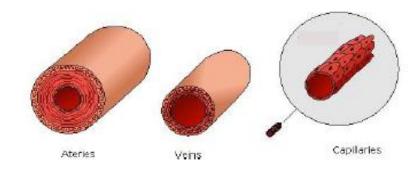
Biology Topic 2: Organisation

	3. Enzymes					
	1	Enzyme	A biological catalyst. One type of enzyme does one specific reaction			
	2	Active site	The area of the enzyme with the specific shape to make the reaction happen with the substrate(s)			
	3 Substrate The chemical(s) which are inv reaction			volved in the	enzyme catalysed	
[3	Denature	When an enzyme has its shape changed so it no longer works		
				Caused by:	 Temperature pH 	
		1	complex Enzyme			

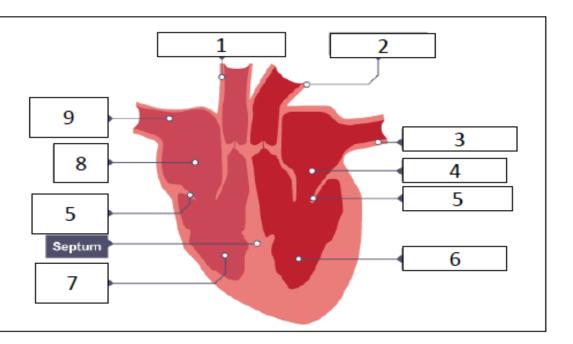
2. Digestive System

Α	Mouth: mechanical breakdown/chew food	G	Appendix: useless organ which harbours bacteria (good and bad)
в	Oesophagus (gullet): push chewed food to stomach	н	Salivary Glands: produce saliva with amylase enzymes to breakdown starch
с	Liver: makes bile	I.	Stomach: Partial digestion of food/mechanically churns food with HCI and protease enzymes
D	Gall Bladder: stores bile which breaks down fats (lipids) and neutralises the HCI(stomach acid)	L	Large Intestine: re-absorption of water
E	Pancreas: production of digestive enzymes	к	Rectum: muscular section of the large intestines
F	Small Intestine: absorption of small soluble particles	L	Anus: where faeces leaves the body


3. Types of enzyme				
Name	Breaks down	Into	Produced in	
Carbohydrase (eg amylase)	Carbohydrates (eg starch)	Simple sugars	Mouth Pancreas Small intestine	
Protease	Protein	Amino acids	Stomach Pancreas Small intestine	
Lipase	Fats (lipids)	Fatty acids and glycerol	Pancreas Small intestine	

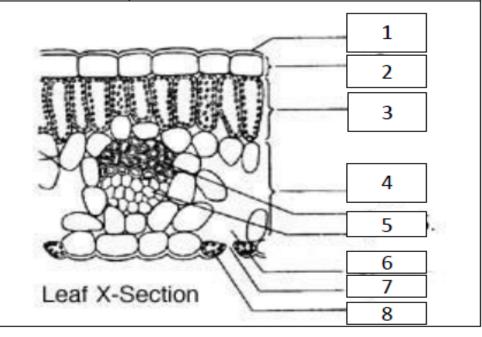

4. Respiratory system

	A	Trachea
	В	Alveoli
	С	Bronchiole
B	D	Right bronchus
s - R	E	Ribs
E GOTA	F	Intercostal muscles
F G	G	Diaphragm
н —	н	Heart


6. Blood vessels				
Name	Lumen (hole) size	Walls	Muscles	
Arteries	Small	Thick	Yes	
Veins	Large	Thin	No	
Capillaries	Very small	1 cell thin	No	

Thin walls Capillary wall one cell thick		
Moist layers	From mucus in alveoli	
Large surface area	Many alveoli	
High concentration gradient	Blood enters with low O_2 and high CO_2	

7.	7. The heart					
1	Pulmonary artery	Carries deoxygenated blood to the lungs				
2	Aorta	Carries oxygenated blood to the body				
3	Pulmonary vein	Brings oxygenated blood from the lungs				
4	Left atrium	Pushes blood to left ventricle				
5	Heart valve	Prevents backflow of blood				
6	Left ventricle	Pumps blood to body				
7	Right ventricle	Pumps blood to lungs				
8	Right atrium	Pushes blood into right ventricle				
9	Vena cava	Brings deoxygenated blood from body				



8. Blood	
Components	Function
Red blood cell	Carries oxygen
White blood cell	Fights infection
Platelets	Blood clotting
Plasma	Liquid that contain the other components and dissolved substances like urea

9. Coronary heart disease				
Coronary heart disease (CHD)	When fatty material builds up and stops the flow of blood to the heart muscle			
Coronary arteries	The arteries that supply the heart muscle			
Stent	A mesh tube used to keep the coronary arteries open			
Statins	Drugs used to reduce blood cholesterol preventing (CHD)			
Faulty valve	When the blood flows in the opposite direction through the heart. Will need replacing with biological or mechanical valve			
Heart transplant	When a donor heart is used to replace a faultly heart			
Artificial heart	Short term mechanical heart used while waiting for a transplant			

10. Health issues	
Health	A state of physical and mental well-being
Disease	An abnormal condition that gives specific symptoms
Communicable disease	A disease which can be transferred
Non- communicable disease	A disease which can not be transferred
Lifestyle factors	Factors which can increase the chances of developing a non- communicable disease (eg smoking, diet, drugs, carcinogens)
Carcinogen	A substance which increases the risk of developing cancer
Cancer	A group of cells that divide uncontrollably
Benign tumour	A type of cancer contained within one area. It does not invade other parts of the body
Malignant tumour	A type of cancer which can invade other tissues and cause secondary tumours

11.	11. Leaf structure and functions				
	Name	Function			
1	Epidermis	Protective layer			
2	Waxy cuticle	Prevents water loss			
3	Palisade mesophyll	Contains a lot of chloroplasts. Site of photosynthesis			
4	Spongy mesophyll	Full of air spaces to allow oxygen and carbon dioxide to diffuse			
5	Vein	Contains xylem and phloem			
6	Air space	Allows gases to pass through			
7	Stomata	Hole for gases to move in and out of the leaf			
8	Guard cells	Control the opening of stomata			

12. Plant veins					
Name	Carries	Direction	Name of process		
Xylem	Water and mineral ions	From roots to leaves	Transpiration		
Phloem	Sugar ('food')	From leaves to roots	Translocation		

13. Factors affecting transpiration		
Factor	Affect of increasing factor	Reason
Temperature	Increases transpiration	Water evaporates and diffuses faster
Humidity (amount of water in air)	Decreases transpiration	Less space in air around leaf for water to diffuse into
Air movement	Increases transpiration	Water evaporates and diffuses faster
Sunlight	Increases transpiration	Stomata are open to let in CO ₂ so more water escapes