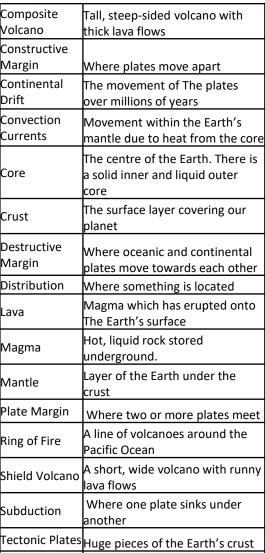


Viscous

Volcano

Montgomery Academy Geography Dept.


KS3 Knowledge Organiser - Tectonics

Knowledge Check 1 Content

Knowledge Check 2 Content

Thick/sticky consistency

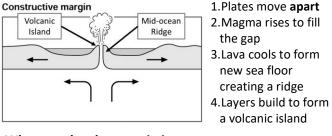
gases escape

An opening in The Earth's crust

through which lava, ash and

What are the layers of the Earth? Thinnest layer (5-70km thick); solid rock Thickest layer (2,900km thick); semi-molten rock; 2 layers Temperature of the sun Inner Core (>5,700°C); solid; nickel & iron Outer Core Temperature 4,000-5,700°C); liquid; nickel & iron What is Continental Drift? Theory by Alfred Wegener that the continents move What evidence is there? Continents fitting together, similar plants, fossils and rocks across different continents

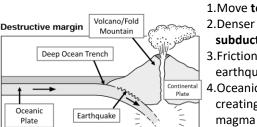



Why do the plates move? **Convection Currents**

- 1. Heat from the core causes the mantle to rise to the surface
- 2. Rising magma pushes plates apart
- 3. Sinking magma pulls the crust down into the mantle (subduction)

How are volcanoes distributed?

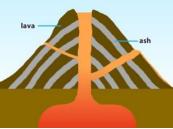
- Mostly along plate margins
- In linear patterns
- 70% are around the 'Ring of Fire'
- Large clusters in Iceland, Japan and south-east Asia



the gap 3. Lava cools to form new sea floor creating a ridge

What are the characteristics of shield volcanoes?

- Gently-sloping sides Formed by layers of
- Eruptions frequent & gentle
- Fluid lava
- E.g. Kilauea and Mauna Loa, Hawaii


- 1. Move together
- 2.Denser oceanic plate subducts
- 3. Friction causes
- earthquakes 4.Oceanic plate melts
- creating viscous
- 5. Volcano erupts violently

What are the characteristics of composite volcanoes?

- Steep-sided
- · Formed by layers of ash and lava
- Eruptions are explosive
- · Lava is viscous

Indonesia

• E.g. Mt. St. Helens, USA & Mt. Pinatubo,

Risk

Secondary Impact

Index (VEI)

Montgomery Academy Geography Dept.

KS3 Knowledge Organiser - Volcanoes

Knowledge Check 3 Content

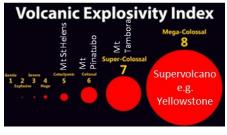
Knowledge Check 4 Content

Active Volcano	Has erupted recently
Ash Cloud	Microscopic bits of rock
	blown out of the top of a
	volcano
Crater	Circular opening at the top
	of the volcano
Dormant Volcano	Has not erupted recently,
	but may erupt again
Extinct Volcano	Won't erupt again
Fertile Land	Land that has lots of
	nutrients
Geothermal Energy	Using the Earth's heat to
	generate energy
Hanand Mannina	Highlighting areas of high
Hazard Mapping	risk during an eruption
Lahar	Mudflow of volcanic debris
	and water
Magma Chamber	Large underground pool of
	molten rock
Main Vent	Tube which magma travels
	to the surface
Mitigate	Make something that's bad,
	less severe, serious or
	painful
Monitoring	Watching volcanoes to
	detect warning signs of an
	eruption
Primary Impact	Something caused directly
	by the eruption
Pyroclastic Flow	A cloud of hot gas and rock
	which flows down the
	mountainside
Risk	A situation involving
KISK I	

danger

Volcanic Explosivity Measures how explosive an

eruption is


Knock-on impacts caused

by the primary impact

What is the structure of a volcano?
4
3
6
(8) 2
1

No.	Feature
1	Magma Chamber
2	Main Vent
3	Crater
4	Ash Cloud
5	Volcanic Bombs
6	Lava Flow
7	Secondary Vent
8	Layers of ash and lava

 Measures how explosive an eruption is on a scale of **0-8** Each level is 10 times more explosive than the previous

Secondary Impact

Primary & Secondary Impacts Primary Impact

→ Food shortages Damage crops -Ash Cloud Shut down airports — Companies lose money

Flatten forests – → Damages animal habitats Pvroclastic _ Bury villages -→ People forced to move away Flow ▶ Destroys bridges → Help is delayed arriving Lahar

Sweeps away houses — Homelessness

Eruption Example - Mt Pinatubo, Philippines (1991)

- Destructive plate margin
- VEI 6

Info

- **Primary Impacts** • Composite volcano • Ash cloud blocked • Lowered global out the sun
 - 1.2m lost homes

farmland lost

• 800km² of

Secondary Impacts

- temperatures by 0.5°C · Diseases spread in aid
- Farmers lost jobs

camps

Why Live Near Volcanoes?

- · Geothermal energy is clean (no CO₂) and cheap
- Fertile soils increase crop vields
- Exporting valuable minerals increases economy Tourism increases jobs in
- hotels, bars, restaurants etc.

How do you fins a location on a world map?.

Step 1. Find how far **east/west** the location is. When the point is located, draw a straight line vertically down the map.

Step 2. Find how far north or south the location is. Once located, draw a straight horizontal line across the map.

Step 3. where the lines intersect, that is the point you are looking for.

Example: Locate point 143w/21s. The example above shows the lines drawn and where they intersect.